Bayesian Mixed Effect Atlas Estimation with a Diffeomorphic Deformation Model
نویسندگان
چکیده
In this paper we introduce a diffeomorphic constraint on the deformations considered in the deformable Bayesian mixed effect template model. Our approach is built on a generic group of diffeomorphisms, which is parameterized by an arbitrary set of control point positions and momentum vectors. This enables us to estimate the optimal positions of control points together with a template image and parameters of the deformation distribution which compose the atlas. We propose to use a stochastic version of the expectation-maximization algorithm where the simulation is performed using the anisotropic Metropolis adjusted Langevin algorithm. We propose also an extension of the model including a sparsity constraint to select an optimal number of control points with relevant positions. Experiments are carried out on the United States Postal Service database, on mandibles of mice, and on three-dimensional murine dendrite spine images.
منابع مشابه
Diffeomorphic metric mapping and probabilistic atlas generation of hybrid diffusion imaging based on BFOR signal basis
We first propose a large deformation diffeomorphic metric mapping algorithm to align multiple b-value diffusion weighted imaging (mDWI) data, specifically acquired via hybrid diffusion imaging (HYDI). We denote this algorithm as LDDMM-HYDI. We then propose a Bayesian probabilistic model for estimating the white matter atlas from HYDIs. We adopt the work given in Hosseinbor et al. (2013) and rep...
متن کاملBayesian Estimation of White Matter Atlas from High Angular Resolution Diffusion Imaging
We present a Bayesian probabilistic model to estimate the brain white matter atlas from high angular resolution diffusion imaging (HARDI) data. This model incorporates a shape prior of the white matter anatomy and the likelihood of individual observed HARDI datasets. We first assume that the atlas is generated from a known hyperatlas through a flow of diffeomorphisms and its shape prior can be ...
متن کاملBayesian Estimation of Regularization and Atlas Building in Diffeomorphic Image Registration
This paper presents a generative Bayesian model for diffeomorphic image registration and atlas building. We develop an atlas estimation procedure that simultaneously estimates the parameters controlling the smoothness of the diffeomorphic transformations. To achieve this, we introduce a Monte Carlo Expectation Maximization algorithm, where the expectation step is approximated via Hamiltonian Mo...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملBayesian Parameter Estimation and Segmentation in the Multi-Atlas Random Orbit Model
This paper examines the multiple atlas random diffeomorphic orbit model in Computational Anatomy (CA) for parameter estimation and segmentation of subcortical and ventricular neuroanatomy in magnetic resonance imagery. We assume that there exist multiple magnetic resonance image (MRI) atlases, each atlas containing a collection of locally-defined charts in the brain generated via manual delinea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Imaging Sciences
دوره 8 شماره
صفحات -
تاریخ انتشار 2015